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10.1 Introduction

Emotion in robotics covers a broad range of uses, from enhanced social in-
teraction [35] to improved survivability and performance [2]. Personality has
also been utilized in human robotic interaction research, such as in works that
embed human personality in a robot to drive certain reactions and uses [21].
Another common approach is using human personality to understand robot
perception, such as the overall impact of the uncanny valley [28]. While emo-
tion is considered a critical feature of personality and is intertwined with the
definition of personality itself [40], less research has been conducted addressing
the interaction of personality, emotion, and robotics. We contend that sound
and music, is intrinsically emotional and tied to human personality, and an
e↵ective medium to explore the relationship between each area.

In this work, we consider links between two of the Big Five personality types,
Neuroticism and Extraversion, their impact on human emotional responses, and
how these traits can be leveraged for HRI. The Big Five is the most common
measure of personality in psychology [12,38] and is considered cross-cultural [30]
with each trait representing discrete areas of the human personality [58]. The
personality traits in the Big Five, also known by the acronym OCEAN, are
Openness to experience, Conscientiousness, Extraversion, Agreeableness, and
Neuroticism. Here, we focus on Neuroticism and Extraversion, which have
shown robust and consistent findings in regards to their role in emotion
regulation for a human’s personality [3]. These personality traits lead to
emotion strategies such as the human process of exerting control over the
intensity and type of emotion felt and how that emotion is displayed [16].

We contend that human personality strategies for emotion can be used
to drive design choices for robot emotional responses. A human’s personality
traits can lead to unique approaches to emotion; for example, individuals with
low levels of extraversion are much more likely to outwardly display lower
valence emotions. We believe that by mimicking human emotion strategies
that are drawn from personality models, we can create varying versions of
robotic responses to stimuli. By modelling human responses to emotional
stimuli we can create robotic personas that are perceived di↵erently by human
collaborators.

In this work we developed two separate emotional responses to positive and
negative stimuli, projected through audio and gestures. These personality types
are based on human emotion strategies for di↵erent levels of Neuroticism and
Extraversion. We believe that emotion strategies can be leveraged to portray
varying robotic personas, with each persona receiving di↵erent ratings from
human participants. We propose that through duplicating consistent emotion
strategy from the Big Five framework, robots will achieve higher likeability
and improved collaboration metrics than a control group.
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For the study, we embedded custom emotional gestures and emotional
musical prosody (EMP) in an industrial robotic arm. We believe robotic
arms are especially well positioned to benefit from increased social interaction
through audio and gesture, as they lack facial features and other communication
methods often present in social robotics. The robotic gestures used were based
on human body language poses and were validated before use. The audio
system was based on an emotional musical prosody engine that has been shown
e↵ective for robotic arm interaction [45]. Avoiding speech and language has
many advantages when it is not required for the interaction, such as reduced
cognitive load [56] and improved trust [43].

This study aimed to address two key questions, firstly how a robot’s
personality type, as portrayed through emotion regulation strategies alter the
perception of the robot. The second question aims to understand if a users’
personality alters their preference for robot emotion regulation strategies. The
study found that ultimately all users prefer robots with low neuroticism and
high extraversion and that music and gestures is an e↵ective medium to portray
emotion in a robotic arm.

10.2 Background

10.2.1 Emotion and Robotics

Emotions can be classified in a variety of manners. The most common discrete
categorization as proposed by Ekman [13] includes fear, anger, disgust, sadness,
happiness and surprise. Emotions can also be classified by a continuous scale
such as the Circumplex model; a two-dimension model using valence and arousal
[39]. Research in robotics and emotion has seen continued growth across the last
20 years [44] and can be divided into two main categories – emotion for social
interaction, and emotion for improved performance and “survivability” [2]. For
social interaction, emotion can improve general expressiveness and interaction
metrics [31]. For improved performance or survivability, robots can use emotion
to reinforce or correct actions such as improved navigation [57].

10.2.2 Personality and Robotics

There are a variety of frameworks for the analysis of human personality
in psychology literature, with the most common categorizations classifying
personality between three and seven traits [23]. In human robot interaction
literature, the term personality is not always used consistently and often lacks
an agreed upon framework [41]. It is relatively common for HRI researchers to
describe robot personality based on distinctive responses to stimuli, without
basing their work on any specific personality model [6, 32]. Some studies have
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shown the potential of embedding psychologically driven personality models in
human robot interaction [48]. These include aligning human and robot actions
based on human personality [51], predicting the acceptability of a robot in
a teaching environment [9], and understanding the impact of personality on
understanding robot intentionality [7].

The Big 5 has been used previously in robotics, such as work focusing
on extraversion and introversion in medical settings [49]. Other work has
demonstrated human participants could accurately identify whether a robot
was acting as an introvert or extrovert [27]. General attitudes based on a
human’s personality traits to robots has also been studied [34]. Likewise, past
studies have shown that humans identify personality traits on robots, with
general preferences emerging for positive traits [53]. Emotion modeling has
been incorporated into some robotic personality models. For example, [1] use
custom, subjective variations in emotional response to create nine unique
personalities. [47] and [36] developed a robotic personality based on the Big
Five, while using emotional responses based on possible relations between each
class of the Big Five and emotion.

10.2.3 Emotion Regulation Strategies for Robotics

Emotion regulation is the process of attempting to modify both an internal
feeling of emotion and our external expression of an emotion [15]. There are
three core features of emotion regulation that separate regulation from common
approaches to emotion in robotics. The first is regulation relies on an intrinsic
or extrinsic activation of a goal to modify emotions [17]. The second feature
emphasizes attempting to mentally engage with the cause of the emotion and
changing one’s internal reaction [18]. The third feature relies on varying the
length and intensity of an emotional reaction [50].

Emotion regulation is a key element of emotion in humans and has direct
links to personality, and has been hardly addressed in HRI research. Research
has begun to cover potential deep learning applications for creating emotion
regulation [19], strategies, however these have focused on generative processes
and not human applications. A meta-analysis of emotion regulation and the
Big Five found 32,656 papers including reference to regulation strategies linked
to personality [4]. These findings are not always consistent however both
Extraversion and Neuroticism had robust findings across the survey.

Overall, the literature in human psychology strongly indicates that emotion
regulation strategies can be linked to personality traits for high Neuroticism
and low Extraversion or low Neuroticism and high Extraversion in humans. [37]
in particular, describe contrasting response types for positive and negative
emotion. High Neuroticism and low Extraversion (HighN-LowE) personalities
are consistently more likely to respond to positive stimuli with lower valence
emotions, such as relief, whereas low Neuroticism and high Extraversion (LowN-
HighE) are much more likely to respond directly with Joy or Happiness. For
negative stimuli, HighN-LowE have a much higher likelihood to show disgust,
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fear, or guilt, while LowN-HighE are more likely to express sadness. In this
paper, we utilize these approaches to present a LowN-HighE robot and a HighN-
LowE robot, each capable of responding with a di↵erent range of emotions to
stimuli. This creates personality models that are able to respond to positive or
negative stimuli, with varying response types, allowing a positive response to
take multiple forms.

10.3 Stimulus

To present models of emotional strategies, we developed and embedded gesture
and audio based interactions in an industrial robotic arm. Our experiment
design consisted of emotional robot gestures and responses to tagged image
stimuli, followed by text questions. These responses were emulated from a
study of response to visual stimuli with human personality types in existing
research [37].

We chose to use a robotic arm due to its rapid expansion in use, with
expected growth continuing into the foreseeable future, largely due to factory
and industry settings. Research has also shown that embedding emotion driven
gestures and audio in non-anthropomorphic robotic arms is more e↵ective in
portraying a↵ect, than embedding such gestures and audio in social robots [45].
Our stimulus was designed as arm gestures that would respond to emotion
tagged images in a manner derived from the personality traits.

10.3.1 Emotional Musical Prosody

We utilized an existing music-driven vocal prosody generator designed to
represent emotions in audio [46]. Emotional musical prosody contains audio
phrases that do not have semantic meaning, but are tagged with an emotion.
They are useful in environments where sentiment or alerts are required from
sound, without semantic meaning. The model we used included validated
emotional phrases that use a voice-like synthesized processed sound. The
dataset was labeled using the Geneva Emotion Wheel (GEW) [42], which
combines both a continuous classification approach based on valence and
arousal as well as discrete labels. The model lists 20 distinct emotions over
a circle, with positions corresponding to the circumplex model of a↵ect [39].
Each quadrant of the GEW corresponds to a di↵erent high/low valence-arousal
pair, with arousal on the vertical axis and valence on the horizontal axis. The
GEW emotions also correspond to the emotions linking HighN-LowE and
LowN-HighE, allowing us to use the classification directly in a personality
model.
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10.3.2 Gestures

To physically display emotion strategies we used the generative system de-
scribed in Chapter 13, mapping human gestures to a 7-joint robotic arm. The
movements for each joint were created by hand, the guidelines and matching
our emotion driven musical prosody engine. The gesture system was designed
by studying traditional human body language postures. Human gestures were
broken down into their fundamental movements based on [52] and [11]. These
motions were then mapped to various joints on the robot. Most of these map-
pings involved designing erect/collapsed positions for the robot as well as
forward/backward leaning motions to create a linear profile of the robot that
matched human gestures.

While human gestures informed the robotic arm’s movement speed, rest
times between movements and number of movements were designed to syn-
chronize with the audio phrases to create a connection between the emotional
prosody and the physical movements of the robot. After primary joint move-
ments were established, smaller, subtle movements were added to some of the
remaining joints to increase the animacy of the robot.

Video samples with audio are available at https://soundandrobotics.com/ch10

10.3.3 Validation

Human perception of the robotic gestures and sounds used in the experiments
was validated in a user study. Each participant completed a survey containing
30 videos. Each video was approximately 8 seconds long and depicted a
robot gesture and sound corresponding to a particular emotion. 17 di↵erent
emotions were represented among the videos, chosen due to the emotions used
in personality based-responses. After each video, participants were asked to
identify the emotion they perceived, along with its intensity on a scale of 1-5,
using the Geneva Emotion Wheel. One video was used as an attention check,
which showed a robot gesture along with audio instructing the participant to
select a particular choice. The validation used a total of 20 participants from
Amazon Mechanical Turk. One participant was eliminated due to failing the
attention check, leaving a total of 19 valid participants. Of these, there were 11
from the United States, 6 from India, 1 from Thailand, and 1 from Malaysia.
17 identified as male, and 2 as female. The mean age was 36.5. The gestures
and audio had previously been validated independently (only audio and only
gestures), which we believe allowed us to test only a small group.

We utilized two metrics to analyze the validity of the videos, based on [10] –
the mean weighted angle of the emotions reported by participants and the
respective weighted variance. Both of these metrics were weighted according
to reported intensity, and were converted to units of emotions on the wheel.
The average emotion error (absolute di↵erence between weighted reported
emotion and ground truth emotion) was 1.7 with a standard deviation of 1.1.
The average variance was 2.8. All emotion errors were below 3.5 except for one

https://soundandrobotics.com
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video, which represented admiration and had an error of 5.0. These results
show that participants were able to interpret the expressed emotions within a
small range of error, making the videos suitable for use in the experiments.

We believed the emotion error rate was well within a reasonable rate for
this study. The error of 1.5, with a standard deviation of 1.1 showed that even
when participants did mistake an emotion for another, they were usually only
one emotion o↵, which was within the range of a possible response in our
personality model.

10.4 Experiment

10.4.1 Method

Research question 1 examines how the robot’s personality alters its perception
amongst all participants. This question does not consider the participants’
personality type and instead aims to identify broad trends amongst all inter-
actions. We considered the traits or anthropomorphism, animacy, likeability,
and perceived intelligence for each robot.

Research Question 1) How does a robot’s personality type as portrayed
through emotion regulation strategies alter anthropomorphism, animacy, like-
ability, and perceived intelligence?

We hypothesized that the robot with LowN-HighE will achieve greater
ratings for likeability and perceived intelligence, while we will see no di↵erence
in anthropomorphism and animacy across all participants combined. We be-
lieved that emotion regulation strategies matching LowN-HighE are conducive
to immediate likeability in a short term experiment as they show less unpre-
dictability. We believed predictability will also contribute to an increase in
perceived intelligence.

Our second research question considered the e↵ect a users’ personality will
have on how they interact with the robotic arm.

Research Question 2) How does a users’ personality type impact their ratings
of di↵erent emotion regulation strategies for anthropomorphism, animacy,
likeability and perceived intelligence?

We hypothesized that each category will have a preference for the emotion
regulation strategy that matches their own personality type for likeability
and perceived intelligence, while there will be no di↵erence for anthropomor-
phism and animacy. While the previous question described our belief that
LowN-HighE would achieve better results, overall we believe that would occur
largely to the addition of LowN-LowE or HighN-HighE, whereas each group
individually will show significant variation in results.

Participants first read a consent form and entered their names to confirm
consent. They then completed the Ten Item Personality Measure (TIPI) [14],
which gives the users’ personality with the Big Five emotion model. TIPI was
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chosen as it has shown strong convergence with widely used longer measures,
and has been shown to e↵ectively gather personality in online platforms such
as Mturk [8].

The main section of the experiment involved participants seeing a photo
followed by a robotic response. We used photos from the open e↵ective stan-
dardized image set (OASIS) [26], which features a range of images tagged with
valence and arousal ratings. We chose photos that clearly showed positive or
negative sentiment but also with a high standard deviation still within the
bounds of positive or negative, implying a range of emotional response. We
used a between experiment design, with participants randomly split into two
groups, either seeing a robot responding to the stimuli with LowN-HighE or a
robot responding with HighN-LowE. The responses were based on the response
type described in Section 10.2.3, with each image returning an emotion based
on the varying emotion regulation strategies. The same images were used for
each robot personality type.

Figure 10.1 shows a sample sad image with a still of the robotic response. For
each photo participants were asked to identify if the accompanying emotional
reaction matched the image with a yes, no, or “other” option. This was inserted
to force participants to watch, as every expected response was yes. Stimuli were
randomly ordered for each participant with an attention check also appearing
randomly. The attention check involved a related image as well as audio
requiring the participant to type a specific phrase in the selection box “other”.

FIGURE 10.1
Sample stimulus and still of robot response.

Following reviewing the emotion stimuli participants were shown three text
questions with an accompanying emotional response. The responses to each
question were matched to expected responses by personality as found in work
by [37].

1. How stressful was the task you just completed?

2. To what extent did you experience positive emotions?

3. To what extent did you experience negative emotions?

After viewing all stimuli, participants completed the Godspeed Question-
naire. Participants were asked to complete the survey while considering the
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robot across all videos shown for each image. Godspeed is a commonly used
human–robot interaction standard for measuring anthropomorphism, animacy,
likeability, perceived intelligence, and perceived safety of robots [5]. We chose
not to ask participants about perceived safety as felt it was not relevant to
the research question or reliably observed given the experiment design. The
Godspeed Questionnaire involves 28 questions (22 without perceived safety),
rating users’ impression of a robot for terms such as Artificial to Lifelike, which
combine to give the broader metrics. Following the Godspeed test, we collected
participant demographic information including year of birth, country of origin,
and gender. The combined study took no more than 15 minutes, with the
average time to completion of 11 minutes. The survey form was hosted on
Qualtrics.

We had 100 participants complete the study on MTurk, of which 8 were
eliminated due to failing an attention check, leaving a pool of 92. Of the 92
participants, the mean age was 42 with a standard deviation of 10 and a
range of 22 to 69. 36 participants identified as female and 57 as male. Each
participant was paid $2.00. 21 participants’ country of origin was India, with
the other 71 from the United States. We found no significant variation in
responses from di↵erences in countries of origin, gender or age.

This study was performed online using pre-recorded videos instead of live
interaction or video watching in person. We believe that for this experiment
this was an acceptable experimental design as ultimately our analysis focused
on external viewing and analyzing a group of robots. Multiple past papers
have shown no significant variation in results when a participant is watching
a robot on video compared to in person [54, 55]. We also believe the use of
MTurk and Prolific has some advantages over in person studies, allowing us a
far larger and more diverse participant pool than possible in person. It has
also been shown that compared to university pools, MTurk participants are
more careful [20]. When combined with our multiple point attention check we
are confident that our results would be replicated in person.

10.4.2 Results

We first analyzed the participants’ personality results and found the break
down between Neuroticism and Extraversion as HighN-HighE n=11, LowN-
LowE n=13, HighN-LowE n=27, and LowN-HighE n=36. For the Godspeed
test, we first calculated Cronbach’s Alpha for each category. The results for
each category were: Animacy 0.83, Anthropomorphism 0.88, Likeability 0.92,
and Intelligence 0.91. This indicates a high internal consistency across all
survey items.

10.4.2.1 Research Question 1

The robot personality with LowN-HighE emotion responses had a higher mean
for both likeability and perceived intelligence. After conducting pair-wise t-tests
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the results were significant for both categories; for likeability (p = 0.011 ) and
for perceived intelligence (p = 0.015 ).

For likeability LowN-HighE the results were (M = 4.191, SD = 0.684),
with a confidence interval of (3.903, 4.480). LowN-HighE had a high e↵ect
size of 0.856. HighN-LowE had (M = 3.606, SD = 0.924) and a confidence
interval (3.272, 3.940). For the intelligence statistics LowN-HighE had (M =
3.992, SD = 0.790) and the confidence interval (3.658, 4.325). LowN-High
had a high e↵ect size of 0.741. For intelligence HighN-LowE had (M = 3.406,
SD = 0.919) and the confidence interval (3.074,3.737). For anthropomorphism
and animacy the results were not significant (p�0.05 ). These results proved
our hypothesis and showed that the robotic personality type did alter the
general populations’ ratings for likeability and perceived intelligence. Figure
10.2 shows a box-plot of the results.

FIGURE 10.2
Comparing robot personality across all participants.

10.4.2.2 Research Question 2

Both human personalities rated the robot with LowN-HighE higher for likeabil-
ity, with a pair-wise t-test giving significant results for LowN-HighE (p=0.025 )
but not for HighN-LowE (p=0.147 ). Figure 10.3 shows an overview of these
results. This partly supported the hypothesis with LowN-HighE preferring
LowN-HighE, but without significant results for HighN-LowE. Likewise per-
ceived intelligence rating was higher from both for LowN-HighE, but again
only with significant results for LowN-HighE human personalities (p=0.049 ),
and for HighN-LowE (p=0.78 ).

Contradicting our hypothesis both animacy and anthropomorphism showed
ratings for robot personality that matched that of the human personality.
Users with LowN-HighE rated the robot with LowN-HighE better for both
animacy and anthropomorphism although neither was significant (p � 0.05 ).
HighN-LowE also rated animacy and anthropomorphism higher for the robot
with HighN-LowE, with a significant result for anthropomorphism (p = 0.004 ).
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FIGURE 10.3
Comparing human personality across platform. Left indicates humans with
LowN-HighE, right HighN-LowE.

Further discussion of these results is available in Section 10.5, including com-
parisons with the results from our second experiment.

10.4.3 Supplementary Results: Openness, Conscientious and
Agreeableness

Our research questions focused on collecting and analyzing the personality traits
Neuroticism and Extraversion, however standard personality measures for the
Big-5 also include Openness, Conscientiousness and Agreeableness. Openness is
linked to levels of curiosity and willingness to try new things; conscientiousness
is considered a e�ciency and organization, while agreeableness is related to
friendliness and compassion. As previously described these traits do not have
consistent findings in relation to emotion regulation, nevertheless we believe
analyzing the links between human’s ratings for openness to our other variables
is worth consideration to guide future work.

Our results for human Openness to experience matched expectations, with
the more open a participant the more likely they were to rate both robot
personalities as likable and intelligent. Comparing openness and intelligence
gave a Pearson’s correlation coe�cient of 0.4 with p=0.002, indicating a
moderate positive relationship. Figure 10.4 shows the high and low openness
trait for each metric.

While [8] found Mturk personality surveys gave accurate results, we believe
TIPI was insu�cient for measuring conscientiousness and could not draw any
conclusions on the trait. TIPI includes two questions for measuring conscien-
tiousness, asking for a self-rating of participants’ dependability and carefulness.
For Mturk we believe participants would be wary to mark either rating too
low and risk their rating on the platform. This lead to a distribution with 88
participants rating themselves as highly conscientious and 5 giving themselves
a low conscientious rating.

We found no relation between agreeableness and preferences for emotion
regulation or robotic personalities. The Pearson correlation coe�cient for each



210 How Happy Should I be?

FIGURE 10.4
Openness to experience personality trait rating for each metric.

metric was: animacy (0.136, p=0.195 ), anthropomorphism (0.46, p=0.661 ),
likeability (0.195, p=0.062 ), and perceived intelligence (0.190, p=0.069 ).

This replicates common psychology findings, that find agreeableness plays a
part in emotion regulation near exclusively in social emotion settings [24,25,29].

10.5 Discussion

10.5.1 Human and Robot Personality

We found LowN-HighE consistently more likable for all users, with significant
results for the LowN-HighE human with LowN-HighE robot. While we can
not conclude why this is the case, we believe it may be due to the nature of
short-term interaction. Especially in a single encounter, it is reasonable to
assume that a robotic agent that shows higher extraversion and more emotional
stability (through lower neuroticism) is more immediately likable regardless of
a user’s personality.

LowN-HighE also received higher ratings for perceived intelligence across
both personality classes. This indicates that perceived intelligence is much
more than just the ability to accurately complete a task. All users almost
unanimously rated the robot as correctly identifying the emotion, yet still
found a significant di↵erence in perceived intelligence. As for likeability, we
believe this reduced intelligence rating is due to higher levels of emotional
instability.

Contradicting our hypothesis anthropomorphism and animacy ratings
corresponded to human personality types, with HighN-LowE and LowN-HighE
both rating their matching robotic personality higher. While we did not predict
this, we believe this does make sense as users who see emotion regulation
strategies closer to their own may be more likely to see anthropomorphic
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characteristics in a robot and more lifelike behavior.

10.5.2 LowN-LowE, HighN-HighE

Our core personality design involved HighN-LowE and LowN-HighE, however
in our participant pool we had users with these personality traits. For this
reason we include some preliminary findings on the group. Our sample size from
experiment one was significantly smaller for both these groups (n=11 and n=13).
Figure 10.5 shows the results for all personality types. LowN-LowE and HighN-
HighE personalities are less common and less easily grounded in literature,
so any conclusions from this data are not easily verified. However, there are
some clear distinctions between comparisons of each human personality. HighN-
HighE has almost no variation between robot personality with no significant
results. This implies either that emotion regulation strategies do not impact this
personality type, or that neither of our emotion regulation strategies strongly
impacted HighN-HighE personalities. LowN-LowE personalities however did
not have significant results for the LowN-HighE robot, for perceived intelligence
(p=0.48 ) and likeability (p=0.49 ). This matches the results achieved for the
general population and the LowN-HighE group. Despite these results, there
is still future work required to draw any conclusions about LowN-LowE and
HighN-HighE personalities and robotics.

FIGURE 10.5
Comparing LowN-LowE and HighN-HighE.

10.5.3 Limitations

While attempting to control for all weaknesses in the study, there are several
limitations that are worth describing. We did not collect information on
participants on how they perceived the personality of each robot, so do not
have a firm metric that the robot was believed to be a certain personality.
This however was a considered decision; it has been repeatedly shown that
untrained humans are inaccurate at predicting other human’s personality types
through observation, especially over short interactions [22,33], so there is no
reliable way to gauge whether a personality type was perceived by a human
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user. Additionally emotion, while a strong part of personality, is just one
component; we do not make a claim that we fully captured any personality
trait, instead our goal was primarily to leverage features of personality traits
and emotion. Nevertheless, future work attempting to identify how emotion
regulation in robotics portrays a personality type to users would be of benefit.

Our study used videos of the robots interacting instead of in person par-
ticipation. We believe for this experiment this did not alter the end results
and improved overall outcomes as we were able to recruit many more partici-
pants than would be possible in person. Multiple past papers have shown no
significant variation in results when a participant is watching a robot on video
compared to in person [55]. In future work, we expect to apply lessons learned
from these studies to in person experiments and interactions and believe lessons
learned from video will apply to in person studies.

10.5.4 Future Work

This research will enable three new directions in future robotic research.
The first is extended research in robot customization, based on a human’s
personality type. This can not only include audio features as described in this
paper but also consideration of all areas of robotic design. We envision future
studies where robot personalities are adapted in the short-term and over longer
use, to the personality traits of individual users.

The second key area is robotic customization to task and project goals,
building through the lens of robotic personality. By embedding personality
traits in robots through design variations we believe robotics can be better
developed for specific interactions and human experiences. There are times
when a higher neuroticism level displayed through audio and gesture may be
useful, such as times when robot interactions should not be the immediate
action.

Finally, we believe this research outlines the need for further consideration
and research of personality traits and their links to human robot interaction.
While this was only an early step into the role of personality traits and potential
links, future steps focusing on embedding specific personalities into robotics
can lead to many enhanced outcomes. Using human personality preferences
to design robotic emotional responses can have multiple broader implications.
Emotion regulation strategies for a robot, whereby the strength of emotional
response to stimuli are altered by a personality based design framework,
provides the opportunity to drive new areas in human–robot interaction and
develop new knowledge regarding the mechanisms that underlie a↵ect based
interaction. Developing an understanding of the potential of personality and
emotion informed design can lead to the creation of deeper interactions between
humans and robots and inform the development of a new framework for emotion
driven interaction
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10.6 Conclusion

The paper presents a new framework for developing emotional regulation and
personality strategies for human–robot interaction through the use of sound
and gesture. It explores how the Big Five personality traits can inform future
designs of emotion-driven gestures and sound for robots. In particular, it studies
the interplay between human and robotic Neuroticism and Extraversion and
their e↵ect on human perception of robotic personality. Key contributions
include the development and implementation of novel a↵ect and personality
models for non-anthropomorphic robotic platforms. Other contributions include
a groundwork understanding of emotion regulation strategies in human–robot
interaction and novel insights regarding the underlying mechanism of emotion
and a↵ect in robotics.
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[4] Barańczuk, U. The five factor model of personality and emotion
regulation: A meta-analysis. Personality and Individual Di↵erences 139
(2019), 217–227.
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