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Abstract

Robots and autonomous systems are being developed at an ever-
increasing rate. Autonomous systems are already prolific in many
households around the world, and their adoption is only expected to
increase over the coming decades. Even so, many of the systems that
are deployed today are still prone to small operational errors such as
struggling to navigate complex environments. While the argument
over how acceptable these kinds of errors are is still ongoing, these
systems are in fact being deployed throughout society and small errors
have the potential to gradually erode the trust in them. One way of
reducing this erosion of trust in robots is to have the robot provide
a spoken explanation for why the error happened. However, speech
is not always a given in robots and it is currently unknown how just
possessing the ability to speak impacts the impression of a robot. To
shed some light on this question, we present data from two online
human-robot interaction experiments. We had 227 participants view
videos of a humanoid robot exhibiting faulty or non-faulty behaviours
while either remaining mute or speaking. The participants evaluated
their perception of the robot’s trustworthiness, likeability, animacy, and
perceived intelligence. While a non-faulty robot achieved the highest
trust, a faulty robot that could speak managed to almost completely
mitigate any degradation of trust. We theorize that having the ability
to speak increases the perceived intelligence and capability of the robot,
which in turn increases trust. It is also possible that speaking causes
the robot to appear more like a sentient or living being, causing people
to be more lenient when evaluating it.
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1 Introduction

For all their progress in recent years, the fields of artificial intelligence,
robotics, and human-robot interaction (HRI) are still in their youths. While
many implementations of robots and autonomous systems have a low rate of
catastrophic failures that would cause damage to the system or its operator,
they still have a somewhat high rate of smaller, temporary, errors of operation
such as faulty navigation. Where to draw the line for what is an acceptable
rate for these smaller errors in, for example, consumer robots is still a hotly
debated topic, with arguments often falling somewhere on the spectrum of
“Human-level performance” to “Completely unacceptable” (See [22, 17, 15, 19]
for discussions on advantages and disadvantages of erroneous behaviour in
robots).

Regardless of where the acceptable rate of error will fall, these systems are
currently being actively sold and deployed in real-world situations throughout
society (e.g. “self-driving” cars, virtual assistants, and robotic vacuum
cleaners). Temporary errors, then, may have a real impact on how much a
user trusts a system and how likely they are to use it again, which could cause
frustration and waste resources as the system sits unused. It thus becomes
important to understand how the trust relationship between a human user
and a robot evolves and changes due to interaction, and how potential damage
to this relationship might be averted.

In their influential analysis of factors that impact trust in HRI, Hancock
et al. [10] showed that the primary driver of trust in HRI is the robot’s
performance. Traditionally, robots in HRI have had some clear function
they are expected to perform (e.g. robotic arms on factory lines or military
drones) and trust in these robots is often evaluated in terms of how likely the
robot is believed to successfully perform its function, based on how it has
performed in the past. However, as robots are becoming more common in
society, they are treated more and more like social agents. For example, it
has been pointed out that users have a tendency to draw on their experience
of human-human interaction when interacting with robots and thus may not
have completely rational expectations for how the robot is to behave [5, 6].
The advantage of designing robots that follow social norms is also argued for
by Brinck et al. [4], who write that robots that follow social norms reduce the
cognitive load of their users and operators who can fall back on a lifetime of
instinct and familiar patterns of interaction, rather than having to learn new
methods of interaction for their robot. Additionally, many theories of trust
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(E.g. [12, 14, 8]) point out that there is a social component to trust, often
called affective trust, in addition to the more competency based component.
The affective trust is based more on gut feeling and instinct rather than purely
on rational reasoning about the system’s past performance. If people tend
to treat robots as social agents, it is reasonable to assume that this social
component of trust plays a part in HRI as well, meaning it might be possible
to use error-recovery strategies from human interaction.

In human-human interaction, one of the most effective strategies for
disarming a tense situation in which one has made a mistake is to apologize
and give a truthful explanation for why the mistake happened. If the apology
is accepted and the explanation deemed reasonable, it is possible to avoid
damage to the trust relationship or at least mitigating the effects of the
damage. Cameron et al. [6] tested how such a strategy might work for a
robotic guide which has navigated to the wrong floor. A number of human
participants were shown videos of an HRI scenario where the robotic guide
either says nothing, apologizes for the mistake, explains why the mistake
happened, or both apologizes and explains why the mistake happened. They
found that explaining why the mistake happened was beneficial for trust in
the robot and its perceived capability, while just apologizing made the robot
seem less capable but more likeable.

Further highlighting the benefits of social behaviours in HRI, Rossi et al.
[21] investigated how robotic social behaviours such as talking or gesturing
affects trust and social acceptance of the robot. Participants were told to
follow a robot as it guided them through a navigation task, where the robot
could either exhibit social behaviours or non-social behaviours. They found
that social behaviours had the best effect on trust and acceptance of the
robot as a guide. When asked which social behaviour they preferred robots
had, the participants unanimously voted for speech.

On the other hand, Savery et al. [24] showed that non-linguistic musical
prosody was viewed more favourably than speech in terms of trust. They
asked participants to interact with a robot that was either using speech or
non-linguistic musical notes to signal emotion. The participants were able to
correctly identify the emotion that was being conveyed and additionally, on
average, rated the non-linguistic robot higher in trustworthiness.

The results from Rossi et al. [21] point towards social behaviours being
advantageous for social robots, with speech seemingly being particularly
preferred among users, while the results from Savery et al. [24] and Cameron
et al. [6] show that verbal communication is beneficial for trust in robots.
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However, unlike with most neurotypical humans, the ability to speak is not a
given for robots or other artificial agents, which more often than not tend
to be mute. How trust in robots is affected by possessing the ability to
speak, without necessarily acknowledging an error, is to our knowledge still
an unexplored area of research.

We designed two online independent measures experiments that together
may help shed some light on this open question. Participants were asked
to view a video of a robot exhibiting one of two different behaviours, and
afterwards evaluate their perceptions about the robot. Experiment 1 aimed
to investigate how faulty and non-faulty gaze behaviours impact trust in
HRI. The results of the experiment were ultimately inconclusive, showing no
difference in trust between the two conditions. This was surprising, as faulty
behaviour has been shown to affect perceptions of robots [22] and negatively
impact trust in HRI [23].

We suspected a potential cause of this surprising effect might be that a
portion of the experiment involved the robot “speaking” since the participants
were told that the robot’s purpose was to explain facts. As mentioned, while
the presence of speech may not affect trust in human-human interaction,
speech may not always be expected in HRI. If that is the case, possessing
the ability to speak could conceivably increase the perceived intelligence or
capability of the robot, which has been shown to correlate with trust in robots
[9]. Communicating in a way that relates to the robot’s core functionality
(Such as using speech when explaining facts) has also been shown to increase
perceived intelligence [25].

To test our theory that speech impacts trust in HRI, we designed a follow-
up experiment, Experiment 2, recreating Experiment 1 as closely as possible,
but without the speech portion.

2 Methodology

2.1 Participants

The experiments were done with a total of 227 participants, 110 in Experiment
1 and 117 in Experiment 2. They were recruited from the online participant
recruitment platform Prolific1. Participants were required to be fluent in
English and naive to the purpose of the experiment (i.e., participants from

1https://www.prolific.co

5



Experiment 1 could not participate in Experiment 2), but otherwise no pre-
screening of the participants was done. The mean age of the participants in
Experiment 1 was 27 years (SD 7.73; range from 18 to 53), in Experiment
2 it was 39 years (SD 15.84; range from 18 to 75). In Experiment 1, the
distribution of genders was 49.1% identifying as male, 50% identifying as
female, and 0.9% preferring not to say. For Experiment 2, the distribution of
genders was 53.3% identifying as male, 46.7% identifying as female, and 0%
preferring not to say.

All participants were required to give their consent to participating in the
experiment before beginning. None of the data collected could be used to
identify the participants.

2.1.1 A note on online HRI experiments

While it may be difficult to convey some subtler elements of HRI using
online studies with video-displayed robots [1], it is still a commonly used
approach and gives access to a much larger and more diverse group of potential
experiment participants compared to live-HRI experiments. At the very least,
the results from such studies can be used as guidance for experiments that
may be worth replicating in live HRI studies [6].

2.2 Robot

The experiments were done using the humanoid robot platform Epi (See
Figure 1), developed at Lund University [11]. The robot’s head is capable of
playing pre-recorded smooth and fluid movements with 2 degrees of freedom
(yaw and pitch), and has a speaker built into its “mouth”. The eyes of
the robot also have 1 degree of freedom (yaw), adjustable pupil size, and
adjustable intensity of its illuminated pupils. Using the control system Ikaros2,
also developed at Lund University, it is possible to use models of the human
brain and cognitive systems for completely autonomous behaviour, however
only pre-recorded movements of the head and the speaker were used for the
experiments.
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Figure 1: Epi, the humanoid robotics platform used in the experiment.

2.3 Experiment set-up

Both experiments had a between-group design, where each participant was
assigned to one of two conditions. Each condition had an associated video
that the participants were told to base their evaluation of trust on. The videos
showed the robot exhibiting either faulty or non-faulty gaze behaviours.3

In the non-faulty gaze behaviour (See Figure 2a), the robot starts looking
into the camera. When an object is presented to the robot, the head moves
until it appears to look at the object, holds the position for roughly 1 second,
and moves back to its starting position, looking into the camera.

In the faulty gaze behaviour (See Figure 2b), the robot again starts looking
into the camera. When the object is presented, the head moves in a random
direction, rather than in the direction of the object. We chose this behaviour
over having the robot remain static, as it was important that the robot
appeared to have the same capabilities in all conditions. All other behaviour
in the conditions with faulty gaze-behaviour is identical to the non-faulty
behaviours.

In Experiment 1, once the gaze behaviour had been displayed, the robot
would play a pre-recorded audio file of a computerized voice presenting a

2https://github.com/ikaros-project/ikaros/
3Videos available at: http://www.soundandrobotic.com/chTBC
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(a) Gaze positions of non-faulty
gaze behaviour.

(b) Gaze positions of faulty gaze
behaviours.

Figure 2: Gaze positions of the different gaze behaviours in the experiments.
The robot smoothly moves between looking into the camera and one of the
gaze positions when presented with an object.

number of facts about the object that had been displayed. The speech makes
no reference to whether or not the robot displayed a faulty or non-faulty
behaviour.

Care was taken to ensure that the robot’s speech never overlapped with
the movement of the head. All behaviours exhibited by the robot were
pre-recorded and no autonomous behaviours were implemented.

2.4 Experiment scenario

To avoid any observer effects, it was necessary to give the participants a
scenario for which to judge the trustworthiness of the robot. As the purpose
of Experiment 1 was to examine the effect of different gaze behaviours, the
scenario was that the robot was being developed for a classroom setting, that
its purpose was to answer children’s questions, and that it was different voices
we were comparing.

Experiment 2 had no speech component, so the participants were instead
told that the robot was reporting which objects it was seeing to an unseen
operator.

All participants were debriefed and told the real purpose of the experiment
after completion.
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2.5 Measures

How much we trust an agent changes over time as we progress through our
interactions, both with the agent itself and other agents [3, 9]. Related to
this notion, it has also been argued that knowing one’s level of trust in an
agent at any one time is not sufficient to draw any meaningful conclusions
(e.g. [16]). Rather than looking at trust at a single point in time, one should
look at trends of trust, using measurements at multiple points in time, and
draw conclusions based on how it has changed as a result of the interaction or
stimulus. We thus measured the amount of trust the participants felt towards
the robot twice; before and after the interaction. For the pre-interaction
measurement, the participants evaluated the trust based on a static image of
the robot (See Figure 1). For the post-interaction measurement, they based
their evaluation on one of the previously described videos. The trust relation
was measured using the 14-item sub-scale of the trust perception scale-HRI
(TPS-HRI) questionnaire, developed by Schaefer [26]. In the questionnaire,
the participants are asked to estimate how frequently they believe a robot
will exhibit a certain behaviour or characteristic, such as being dependable or
requiring maintenance. The scale outputs a value between 0 and 100, where
0 is complete lack of trust and 100 is complete trust.

To measure the participants’ impressions of the robot after the interaction
we used the Godspeed questionnaire [2] which has the participants rate
the robot on 5-point scales where the extremes of the scale have labels
with semantically opposite meanings (E.g. “Unfriendly” and “Friendly”).
Specifically, we used the Perceived Intelligence, Likeability, and Animacy
sub-scales of the Godspeed questionnaire.

To control for any negative feelings the participants may have harboured
towards robots before the experiment, the Negative Attitudes Towards Robots
Scale (NARS) was used [28]. NARS gives an overview of both general negative
feelings towards robots, and three sub-scales for negative feelings towards
interaction with robots (S1), social influence of robots (S2), and emotions in
robots (S3).

Since robot experience has been shown to affect feelings of trust towards
robots [18], we also asked the participants how often they interact with robots
and autonomous systems on a 5-point scale, where 1 was daily interaction
and 5 was rare or no interaction.
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Figure 3: Comparison of differences in trust before and after interaction. A
significant difference exists between the faulty and non-faulty conditions in
Experiment 2.

3 Results

3.1 Trust

In Experiment 1, no significant difference was found between the faulty and
non-faulty conditions (Mann-Whitney U, p = 0.179). However, once the
speech of the robot was removed in Experiment 2, a significant difference
was found (Mann-Whitney U, p < 0.01). Looking at the plot of differences
in trust in Figure 3, this difference seems to be due to the faulty behaviour
reducing the trust, rather than the non-faulty behaviour increasing the trust.
No significant difference was found between the non-faulty conditions in
Experiment 1 and Experiment 2 (Mann-Whitney U, p = 0.230).
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Experiment Condition Animacy Likeability
Perceived
Intelligence

Experiment 1
Non-faulty 2.903 4.011 4.135
Faulty 2.815 3.764 3.927

Experiment 2
Non-faulty 2.464 3.331 3.311
Faulty 2.244 2.971 3.036

Table 1: Mean scores from the Godspeed questionnaires for Animacy, Like-
ability, and Perceived Intelligence.

3.2 Perceived characteristics

Mean scores from the Godspeed questionnaires for Animacy, Likeability,
and Perceived Intelligence can be found in Table 1. Cronbach’s Alpha with
a confidence interval of 0.95 for all Godspeed questionnaires were in the
0.7− 0.9 interval, indicating acceptable to good internal consistency. Both
conditions from Experiment 1 rank higher than Experiment 2 in all measured
characteristics.

3.3 Participant-centric metrics

Regarding participant-centric characteristics that may affect the trust in the
robot, we controlled for mean age, gender distribution, pre-existing negative
attitudes towards robots, and participant experience with robots and other
autonomous systems.

3.3.1 Negative attitudes towards robots

Figure 4 shows the Kernel Density Estimate of NARS and its three sub-
scales. The full NARS scale and the two sub-scales S2 and S3 are roughly
normally distributed, indicating that the participants had overall neutral
feelings towards robots before starting the experiment. The sub-scale S1
skews slightly lower, indicating that the participants had slightly negative
feelings towards social situations and interactions with robots.

No significant differences can be seen in negative attitudes between the
two experiments.
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Figure 4: Kernel Density Estimate of NARS and its three sub-scales. A lower
score indicates a more negative attitude.

3.3.2 Participant age

Of the participant-centric metrics we controlled for, only age differed signifi-
cantly between the two experiments, with the mean age being 12 years higher
in Experiment 2. While age has been shown to have an impact on attitudes
towards technology, with older people having a more negative attitude [7],
the negligible difference in the distributions of the NARS scores (Figure 4)
indicate that the difference in mean age between the experiments is likely not
large enough to affect the results.
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3.3.3 Participants’ experience with robots

Frequency Experiment 1 Experiment 2
Daily 40% 41%
Once a week 30% 22.2%
Once a month 13.6% 14.5%
Once a year 8.2% 11.1%
Never 8.2% 11.1%

Table 2: Proportions of how frequently the participants in either experiment
interact with robots, AI, and other autonomous systems.

The participants in either experiment interact with robots, AI, and au-
tonomous systems with roughly equal frequency (See Table 2), with the
majority interacting with such systems daily.

4 Discussion

The question we sought to answer here was how the ability to speak interacts
with perceived intelligence and trust in a humanoid robot. The combined
results show that, if the robot behaves in a non-faulty manner, unsurprisingly,
trust in the robot remains largely unaffected, regardless of whether it can
speak. However, once the robot is perceived as being faulty, having the ability
to speak seems to reduce the resulting loss of trust, making the faulty robot
appear about as trustworthy as the non-faulty ones. According to the results
from the Godspeed questionnaire, the speaking robots were also perceived
as being more animated, likeable, and, notably, as possessing significantly
higher intelligence than the non-speaking robots. This could be an indication
that, for humanoid robots, the ability to speak is perceived as a sign of
high intelligence. Alternatively, the speaking robot may appear to be more
sophisticated or be more capable than the non-speaking robot. Both high
perceived intelligence and high capability are believed to have some correlation
with a higher trust [27, 9, 20].

It is worth noting at this point that possessing the ability to speak is not
necessarily indicative of “actual” intelligence. There are plenty of animals,
such as corvids and primates, that are capable of tool-making and other
intelligent behaviour but are unable to speak. These findings, therefore, should
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only be applied to humanoid robots and even then should be interpreted
carefully. While a speaking robot may appear more capable or intelligent
than one that is mute, it is important to remember that the only aspect that
is necessarily different between them is that the speaking robot is equipped
with a speaker. They may still contain the same, potentially faulty, sensors,
circuitry, and algorithms. Perceived intelligence in artificial agents can be
deceptive and should thus not be confused with “actual” intelligence.

Nevertheless, these results highlight the benefits of implementing speech
in a robot. Not only are robots with speech more likeable according to the
Godspeed questionnaire, perhaps because speech reduces the cognitive load
by allowing users to take advantage of social norms as argued by Brinck et al.
[4], but they are also trusted more in the event of an error in its operation.
Why this effect exists is still unknown, but it is conceivable that speech makes
the robot appear to be more human and thus more like a social actor, causing
the user to be more lenient when evaluating its performance. The increase in
the Animacy score of the Godspeed questionnaire for the speaking robots is
in favour for this theory, as is the fact that people seemingly already have a
tendency to treat robots as social actors (E.g. [6]).

In conclusion, we have presented results from two experiments in HRI
that together suggest that a humanoid robot with the ability to speak may
not suffer the same loss of trust when displaying faulty behaviour as a robot
without the ability to speak. We theorize that this effect is due to speech
increasing a humanoid robot’s perceived intelligence, which has been shown
to correlate with trust in HRI [9]. Further research along these lines may
help explain existing studies in HRI (See e.g. [6]) that indicate that a robot
providing a verbal explanation for its errors is beneficial for user attitudes.
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4.1 Limitations

There are some limitations that should be kept in mind when using these
results. First, as mentioned, the experiments were done online using pre-
recorded videos of the robot rather than direct human-robot interaction. The
large amount of available participants should safeguard against false positives,
however a live-HRI study may nevertheless yield different results.

Second, the experiment scenario was different between the two experiments,
with participants in Experiment 1 being told that the voice was the focus
of the study. This could potentially have caused participants to ignore the
gaze behaviour of the robot and focus solely on its voice, which was the same
across the conditions.

Finally, the content of the robot’s speech was not controlled for. It is
conceivable that some part of the speech is signalling to some participants
that the robot is highly capable or intelligent, causing the trust to increase.

4.2 Future Work

Several future research directions are available based on these results. The first
step would be to address some of the identified limitations with the original
study. Redoing the experiment with the same scenario for all conditions
and/or controlling for the contents of the speech would be useful to further
strengthen the hypothesis.

It would also be interesting to see if the same effect is present in a less
controlled live-HRI scenario. It is conceivable that physically interacting
with the robot would allow a participant to spot the “cracks” in the robot’s
behaviour, which could negatively affect the perception of it. Alternatively,
physical interaction could be more powerful than virtual interaction, since
interacting with a humanoid robot in real life is a novel experience for many
people. Related to this, it could be interesting to see whether the effect holds
with more common, non-humanoid, robots as well.

Going along the line of impacting trust through perceived intelligence, it
would be interesting to see what other characteristics of a robot can be used
to increase or decrease perceived intelligence. For example, while the results
of the initial gaze behaviour study proved inconclusive due to the effects of
the speech, investigating how different gaze behaviours affect perceptions of
a humanoid social robot. An interesting question that could be answered is
whether a robot that imitates human behaviour appears more intelligent and

15



capable (and thus more trustworthy), or if it is perceived as something “other”
imitating humans and thus becomes alienating.

One could also investigate whether non-linguistic sounds such as grunts
and sighs impact the perception and trust in a humanoid robot. Such
sounds have been shown to be used for communication of information in
animals and humans, and affect perceptions of characteristics such as size and
aggressiveness (See e.g. [13]). Testing this in robots would be interesting since
non-linguistic sounds can be used to signal the similar perceptive capabilities
(e.g. object detection/identification) as speech, but without the linguistic
capabilities necessary for speech. This could be contrasted with speech to
see if it is truly speech that impacts trust, or if it is the capabilities that are
implied by the speech.
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