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1 Introduction

When we imagine interacting with robots in human environments, we imagine
speech and language as a core modality. Human-robot interaction is a key
area of study for using robots in human environments such as schools, homes,
and care facilities; in order to usefully engage with people in such settings,
robots will need to be able to gracefully interact with the people around them,
and natural language represents an intuitive, comfortable mechanism for such
interactions. This chapter will discuss the role of natural language processing
(NLP) in modern robotics and human-robot interaction, and specifically, how
grounded language learning is a critical modality for robots to understand the
world. While it is crucial to study language from an auditory perspective,
understanding the underlying semantics—the linguistic meaning and intent of
those speech acts—is necessary for smooth interaction with robots in human-
centric environments.

Robots can use language as a mechanism of interaction, but also as a tool for
learning about the world around them. They can follow instructions [79, 32],
respond to interactions using language (for example, by acknowledging com-
mands or seeking clarification) [53], and use language to repair or reshape in-
teractions [18, 28]. Frequently, these interactions are scripted: the human has a
fixed set of possible commands, which may be provided, or which they may need
to learn from experimentation. However, for truly flexible agents, it is preferable
to learn from interactions what words and instructions mean. Grounded lan-
guage learning is specifically the process of learning language from interactions
with the world, and learning about the world from language used to describe
it [87]. The core idea is that treating language learning as a problem grounded
in the physical world via robotic agents will improve the effectiveness of both
robotic interaction and natural language understanding [66].

Speech is already a key mechanism for embodied devices such as home as-
sistants, phones, and even game consoles. While automated speech recognition
(ASR) has become a relatively mainstream technology and continues to im-
prove, there are still substantial difficulties with using those technologies for
robotics [62], including environmental noise, latency, and a lack of datasets and
models specific to real-world environment interaction. Some of the complexities
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of managing speech in robotics have been discussed in other chapters. How-
ever, even when the difficulties of accessing speech are disregarded, there are
substantial NLP-based challenges with using language as it pertains to robots.

In this chapter, language is considered as a mechanism of referencing con-
cepts in the physical world, and how natural language processing dovetails with
work on using speech and making sense of language in a robot’s environment is
explored. Grounded language acquisition as a research area is examined, and
a case study is presented of learning grounded language from speech by exam-
ining the question from three distinct-but-related angles: the need for complex
perceptual data (and a resulting corpus), the need to learn to interact directly
from speech without using a textual intermediary, and the problem of learning
grounded language from richly multimodal data.

2 Grounded Language Acquisition

Language is comprised of symbols, and understanding those symbols and their
underlying meaning—the symbol grounding problem—is a core aspect of artifi-
cial intelligence as a field [36, 14]. The fundamental idea underlying grounded
(or embodied) language is that language does not exist in a vacuum: it derives
from, and refers to, objects and actions in the physical environment in which
robots operate [87]. Accordingly, this language can be learned by connecting
co-occurrences of language with physical percepts perceived by a robot. While
a substantial body of this work is related to what is frequently referred to as
“Vision-and-Language,” in practice, this terminology often refers to tasks such
as Visual Question Answering [3] and Visual Commonsense Reasoning [96],
where no literal physical agent is necessarily involved. This is a richly stud-
ied area, with connections to language modeling, automatic speech recognition,
human-robot interaction, learning in simulation, and vision-and-language nav-
igation and manipulation, among others. This section provides a necessarily
partial overview of recent work.

One way to examine the current state of the art in grounded language learn-
ing is to consider the related and overlapping sub-tasks which people use as
testbeds. Grounded language can refer to language about a wide range of as-
pects of the environment: objects and their attributes [16, 75], actions and
tasks [41, 57, 20]—notably including vision-and-language navigation, a special
case that has been studied since very early in the history of embodied lan-
guage understanding (surveys: [35, 93, 69])—or referring expression ground-
ings [89, 61], to name a few.

One significant body of physically situated language work revolves around
the use of large pretrained vision-and-language models (VLMs). Contrastive
language image pretraining (CLIP) encoders [72] have been successfully used for
embodied navigation and vision-and-language navigation-related tasks [51, 80]
and tabletop manipulation-based instruction following [81]. Other grounded
language learning-adjacent works depend on such large language models (LLMs)
as BERT [30], including ViLBERT [58] and Embodied BERT [85], which focuses
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on object-centric navigation in the ALFRED benchmark [82]. In particular,
LLMs are frequently used to help derive plans for following natural language
instructions for completing tasks [45]. SayCan [1] uses a combination of LLMs to
extract possible useful actions in the world given a goal, and uses affordances of
a physical robot to determine, of those actions, which are feasible to perform. In
[43], an LLM is used to generate steps towards a goal, incorporating perceptual
feedback about the environment in order to improve long-horizon planning.

Other approaches focus on the use of smaller but more task-specific knowl-
edge bases. In [16], few-shot learning of object groundings is accomplished by
adding to a database of examples of simulated objects overlaid on real environ-
ments; [68] learn to interpret task instructions by probabilistically connecting
instructions to background knowledge found in part in relational and taxonomic
databases. In the class of interactive language grounding in robotics, a physical
agent can follow instructions interactively [59] or can learn to improve its per-
formance on a task based on communication with a person (e.g., [20]). Other
work has focused on collections of instructions that pertain to a specific envi-
ronment [4, 63] and do not incorporate non-perceptual background knowledge.

Despite this preponderance of language-based approaches, the space of robots
learning about the world via actual speech is comparatively nascent. Despite
early work in learning the grounded semantics of spoken utterances [95, 76],
most recent work on language grounding has focused on textual content, gen-
erally obtained via crowdsourcing [4, 70] or from web-scale data such as image
captions or tags [54]. In some cases, text is transcribed from spoken language,
either using automatic speech recognition (ASR) [9] or manually [90]. However,
when interacting with embodied agents such as robots, speech is a more appro-
priate modality than typed text. This leads to the core technical aspect of this
chapter: a discussion of grounding language via speech.

3 Learning Grounded Language about Objects

This section describes a case study of attempting to understand unconstrained
spoken language about objects. While object recognition based on vision is an
extremely active area of research in both 2D and 3D contexts [7, 71], using
grounded language with robots in human environments introduces additional
problems. First, although large pre-trained visual models contain extensive
coverage of some object classes, they suffer from long tail problems when en-
countering rare objects in the environment or unusual exemplars of common
objects [84]. Second, language about grounded concepts frequently evolves over
the course of an interaction: people create new terminology and repurpose ter-
minology on the fly during interaction [17, 44], meaning that a robot may need
to learn new and remapped terms in real time as interactions unfold. Finally,
existing large vision-and-language models tend to be Western-centric [78, 5], po-
tentially limiting the usefulness of deployed systems in other cultural settings.

Learning to understand unconstrained language about objects may entail
learning class names, but may also require learning to understand a variety
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of perceptually meaningful descriptors—for example, people may choose to de-
scribe objects based on color and shape, or on the material they are made from,
e.g., ceramic or aluminum [75]. It is therefore necessary to learn the semantics
of a variety of grounded terms above and beyond simple object names. This ne-
cessitates addressing a number of subproblems, including not only the collection
of an appropriate dataset in order to benchmark the success of our efforts, but
also the development of mechanisms for learning from speech without a textual
intermediary and learning from rich multimodal sensor data.

3.1 A Dataset for Multimodal Language Understanding

While there has been extensive work on understanding language using large-
scale pretrained natural language models such as BERT [30], in practice, ground-
ing requires that such language-focused models be augmented with perceptual
data from robotic sensors [12], typically in the form of visual data (survey:
[26]). In our use case of allowing people to use speech directly with robots,
there are two significant difficulties with this approach: First, robots tend to
have perceptual capabilities beyond vision, such as depth perception (poten-
tially along with more exotic sensory capabilities such as thermal sensing); and
second, HRI contexts provide a comparatively small amount of spoken training
data, as distinct from the very large amounts of textual data that are available
(for example, in the form of image captions).

Figure 1: The GoLD dataset has
RGB and depth point cloud im-
ages of 207 objects in 47 cat-
egories. It includes 8250 text
and 4045 speech descriptions; all
spoken descriptions include auto-
matic transcriptions.

Nonetheless, when interacting with
robots and other embodied agents, it is
natural for people to want to speak to
them, and many deployed systems use
speech [88]. Spoken language is critical
for interactions in physical contexts, despite
the inherent difficulties: spoken sentences
tend to be less well framed than written
text, with more disfluencies and grammati-
cal flaws [74]. However, despite these differ-
ences, text is commonly used for grounded
language learning, presumably due to its
wide availability and comparative ease of
computational processing (with a few excep-
tions, inter alia [10, 34, 48]). In this sec-
tion, the development of the Grounded Lan-
guage Dataset (GoLD)1 is described. GoLD
is a dataset of object descriptions for speech-
based grounded language learning [49]. This
dataset contains visual- and depth-based
images of objects aligned with spoken and
written descriptions of those objects col-

1https://github.com/iral-lab/gold
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lected from Amazon Mechanical Turk.
GoLD contains perceptual and linguistic data in five high-level categories:

food, household, medical, office, and tools. In these groups, 47 object classes
contain 207 individual object instances. These categories were selected to rep-
resent objects that might be found in common human-centric environments such
as homes and offices, and contain multiple examples of objects that are typical
for such contexts, such as apples, dishes, analgesics, staplers, and pliers. For
each of these objects, approximately 450 vision+depth images were collected as
the object was rotated on a turntable in front of a Kinect RGB+D camera. For
each object, four images from distinct angles were chosen to represent object
‘keyframes.’ Using rotational visual data helps to avoid a known problem with
many image datasets, namely their tendency to show pictures of objects from a
limited set of angles [8, 91, 89], whereas a robot in a home might see an object
from any angle.

Three distinct types of language data were collected/created for each object
in this dataset. For each keyframe, approximately twenty spoken descriptions
were collected, leading to a dataset of 16,500 spoken descriptions. For compar-
ison purposes, transcriptions of these descriptions were generated using Google
Speech to Text. Manual evaluation of a subset of these transcriptions suggests
that approximately 80% were good enough for grounded language understand-
ing. Another 16,500 textual descriptions were separately collected; these were
not associated with the spoken descriptions or provided by the same set of Me-
chanical Turk workers (although some workers did work on both problems, they
were not given aligned examples to label). The types of data present in GoLD
are shown in fig. 1.

GoLD fits into a landscape of datasets used for grounded or embodied lan-
guage learning, and extends that landscape by providing a very rich dataset, in
which each object is associated with a large number of images, depth images,
and spoken descriptions. While there are many spoken-language datasets in
existence, they are frequently handcrafted for the specific task that the research
seeks to accomplish, often leading to narrower applications, for example, ques-
tion answering [47]. Meanwhile, recent large-scale datasets that include speech
typically incorporate synthetically generated speech [38, 27, 39, 29], use gener-
ated spoken descriptions from the text captions [56, 94], or ask crowdsourced
workers to read captions [37, 42]. This may remove agrammatical constructs,
disfluencies, and speech repair, effectively gating the complexities of speech
through written language. Other larger datasets exist that contain (real or vir-
tual) scenarios in which embodied vision+depth sensor data can be extracted,
such as the ALFRED benchmark [83]; however, aligned, unconstrained spoken
language is rarely included.

3.2 Learning Multimodal Groundings from Spoken Lan-
guage

Grounded language learning offers a way for robots to learn about dynamic
environments directly from individual end users. However, as described above,
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much of the current work in this area uses text as the linguistic input, rather than
speech. Grounded language learning that does incorporate speech frequently
relies on automatic speech recognition (ASR). Off-the-shelf ASR systems often
have substantial drawbacks when used in robotic settings [62]: they introduce
latency to the system, work poorly in noisy environments (including the noise
produced by the robot itself), and cannot use perceptual information about the
environment to improve on recognition. In addition, current ASR systems work
inconsistently across demographics such as gender, race, and native language [2,
13, 33, 86, 92], which can lead to failures of inclusive design.

Despite this gap, in many cases, the learning methods applied to acquiring
grounded language are relatively agnostic to the type of input, relying on broad
approaches such as manifold alignment [67]. As a result, text can be replaced
with appropriately featurized speech as an input to the joint language learning
model [50]. A number of existing pre-trained speech representation models are
available to encode speech into appropriate featurizations, making it possible to
encode the spoken descriptions in GoLD and treat those encodings as input to
a combined language learning model. This section describes a learning method
that performs object grounding directly from speech, without relying on a tex-
tual intermediary; that work is then extended to a model that is capable of
handling complex, multimodal input, even in cases where some sensory data
becomes unavailable.

Figure 2: Triplet loss tries to minimize
the distance between an anchor point, here
the perceptual inputs of an object (boxed
in green); an associated sample in another
modality, here the language describing that
object (boxed in purple); while maximiz-
ing the distance between the anchor point
and a negative point in the other modal-
ity, such as the description of an unrelated
thing (boxed in red). The learned embed-
ding then should embed language “near”
the things it describes and “far” from other
things.

In order to learn from the
data in GoLD, it is first nec-
essary to featurize the disparate
data types. Different featuriza-
tions are used for each of the vi-
sion, depth, and spoken language
modalities. Visual features (im-
age and depth) are extracted us-
ing ResNet152 pre-trained on Im-
ageNet [40], and the last fully
connected layer is removed to
obtain 2048-dimensional features.
RGB images are processed di-
rectly, while depth images are col-
orized before processing [75]. For
the simple manifold alignment-
based learning case, these vectors
are concatenated to make a sin-
gle visual vector. Speech is fea-
turized using wav2vec 2.0 [6],
in which audio is encoded via
a convolutional neural network,
then masked spans of the result-
ing speech representations in the
latent space are input to a trans-
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former network. Wav2vec 2.0 uses a two-stage training process: the first stage of
training focuses on learning local patterns in the audio, such as phonemes, while
the second stage focuses on learning patterns such as sentence structure. In our
case, a pre-trained model was used, which was fine-tuned for speech recognition.

Manifold alignment: In the simple case, language groundings are learned
from these encodings using a procedure known as manifold alignment, where
featurized language and sensor data are treated as projections of some under-
lying manifold in a shared, non-observable latent space, and the goal is to find
the functions that approximate the manifold. In this approach, groundings are
learned by attempting to capture a manifold between speech and perceptual
inputs. The goal is to find functions that make projections from both domains
‘closer,’ in feature space, to other projections of the same class.

For textual language, the approach used is triplet loss, a geometric approach
that has shown success in learning metric embeddings [31]. Triplet loss is a
form of contrastive learning, which learns representations of data by comparing
points to representationally similar or dissimilar points. The goal is to learn an
embedding which ‘pulls’ similar points closer together in the feature space and
‘pushes’ dissimilar points further apart. Our manifold alignment learning uses
triplets of the form (a, p, n), where a is an ‘anchor’ point, p is a positive instance
of the same class as the anchor (for example, tomato), and n is a negative
instance from a different class (for example, plate). The goal is to maximize for
each triplet the distance between a and n while minimizing the distance between
a and p. This is achieved through the loss function L = max(0, d(f(a)−f(p))−
d(f(a) − f(n)) + α), where f is the relevant embedding function for the input
domain, d is a distance metric, and α is a margin imposed between positive and
negative instances. Given our multimodal data, the embedding function f is
the encoder that projects instances of a given modality into the shared manifold
(see fig. 2 for an example).

This approach to learning language groundings directly from speech has
proven to be quite successful [50] on a downstream object retrieval task, in which
the system is presented with a query where a robot must choose an object to
retrieve from a set of alternatives (where the queries are spoken natural language
inputs such as “The black and gold University mug”). This speech-based model
outperforms text-based approaches to the same retrieval task, despite the fact
that the model was initially designed for textual input [67].

Multimodal learning: As mentioned, although vision is a key way of per-
ceiving the environment, it is not the only sensor available to robot platforms.
The approach described above handles depth by concatenating the depth image
to a scaled RGB image, and cannot incorporate additional modalities. Further-
more, it is still able to handle only a single communication modality (speech
or text). However, people may wish to communicate in a multimodal fashion,
in which case multiple interactive modalities should be taken into account si-
multaneously: while speech is an obvious mechanism for embodied interaction,
there are cases when it is preferable to convey complex commands from a com-
puter or via an interface on a phone. This section discusses an extension of the
contrastive learning described above that begins to address these requirements.
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In addition to handling multiple sensory and communication modalities, such
a learning mechanism should be robust to missing modalities. A robot’s percepts
may be only partially available when handling a learning problem—sensors may
fail, may be occluded at key moments, or may be missing from certain platforms;
people may communicate via speech, gesture, text, or some subset of those.
All of these desiderata taken together suggest the need for a broader learning
mechanism that is (1) capable of handling arbitrary numbers of modalities, (2)
robust in the face of modality dropouts, and (3) able to learn from relatively
small-scale, human-provided inputs.

Broadly speaking, our approach is to extend the idea of geometric loss by
combining it with a cross-entropy based supervised contrastive loss function [52],
in which labels are used to allow points belonging to the same class to be pulled
to the same area in embedding space, while points belonging to other classes
are pushed apart. It is a general version of multiple contrastive loss functions
including triplet loss, as well as general contrastive loss [24]. A distance-based
loss function is defined that can be used for an arbitrary number of modalities.

Standard triplet loss, as described above, can be applied to only two modal-
ities, and is not robust to sensor ablation. To address these issues, pairwise
distance optimization is used for all data points. During training, two different
instances are sampled and their corresponding representations from all modali-
ties are split into two sets—one positive set (referring to a specific object) and
one negative set (referring to some randomly-selected different object). In our
setting, every item in the positive set becomes an anchor once, and the distance
is minimized between that item and other items in the positive set, while mini-
mizing the distance between that item and all items in the negative set. This can
be seen as an one-to-many relationship instead of the one-to-two relationship in
the triplet loss formulation.

This approach is tested over the four main modalities of the GoLD dataset:
RGB, depth, speech, and text. Encoding mechanisms appropriate to each
modality are selected. BERT [30] embeddings are used to featurize textual
input, and wav2vec2 [6] to extract audio embeddings from speech. To process
images, ResNet152 [40] is used for both RGB and depth images, producing a
2048-dimensional embedding vector. The objective is then to first minimize the
distance between each pair of positive points from heterogeneous modalities,
and second, maximize the distance between each pair of positive and negative
points from all modalities. This combined loss function results in a learning
mechanism that outperforms supervised contrastive loss in both the speed of
convergence during training, and number of data points required to build a
model capable of performing a downstream object retrieval task.

4 Open Challenges

Although learning to understand and learn from grounded language is an active
and successful field of research, a number of challenges remain to be addressed.
Discussing open questions in a fast-moving field such as language grounding
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carries an element of risk. There has recently been a surge of rapid develop-
ment in applications of NL technology and robotics, enabled by new technologies
and very large-scale data sources, that would have been difficult to predict a
small number of years ago. Nonetheless, and despite this promising uptick in
progress, there remain significant barriers to deploying robots that understand,
learn from, and interact using language in a physical context. In this section,
some open challenges are briefly discussed, as well as some characteristics prob-
lems may have that make them difficult to address using currently popular
approaches.

Some of the problem characteristics of note in this space are familiar from
machine learning and robotics more generally, although grounded language of-
fers its own unique difficulties in solving those problems. Some of these include
scalability, or how learned models of grounded language can scale to a wide range
of objects, tasks, and modalities; generalization, how such models can general-
ize to new examples of learned concepts and generalize across different robot
platforms, including via few-shot and zero-shot learning; multi-modality, how
robots using multiple complex sensors can interact with people using a variety
of communication modalities; and common sense reasoning, in which systems
can use an understanding of the broader world to solve otherwise under-specified
problems.

First, despite the progress described above, there remain substantial prob-
lems involved in using actual speech with robots. [62] provides an overview of
these difficulties, sorted into eight categories. These categories cover human-
robot interaction questions (such as improving the modeling of social compo-
nents of language), systems-level questions (such as the timing and latency
difficulties of performing speech-based interaction in real time and developing
improved learning models), and infrastructure-level suggestions for improving
the context in which speech for robotics is studied. Despite the progress de-
scribed above on using speech directly, challenges such as disambiguating speech
in noisy environments remain.

A broad class of problems in this space includes developing models that
can learn from a small amount of data or in unsupervised settings. While
there is extensive work on learning from a small number of examples based on
pre-training [77, 60, 55], the complexity of human spaces and robotic sensing
make performing few-shot learning in idiosyncratic real-world settings a distinct
challenge. There is a long tail of potentially out-of-distribution objects that may
be encountered, sensors may give partial information, and people interacting
with a robot will be understandably reluctant to provide a significant number
of training examples. This ties into another difficulty, that of dealing with low-
resource settings. For example, while there are a tremendous array of resources
available for English and a few other major languages, the same is not always
true of smaller languages or dialects of the sort that may be spoken in human-
centric settings, or of idiosyncratic or ambiguous language.

Given their current popularity and effectiveness, it is particularly worth dis-
cussing the strengths and drawbacks of applying large language models and
large vision-and-language models to grounded language. As described above,
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LLMs have demonstrated tremendous success on a wide variety of NL applica-
tions, including some language grounding problems. Nonetheless, while they are
broadly good at producing output that seems correct at first glance, they do not
necessarily fully grasp the semantics of complex grounded language [12]—such
models have been trained on large amounts of (typically) textual data, but lack
data to understand and reason about the physical world, making it difficult for
them to understand contextual language about physical settings. These models
have shown some success in planning tasks where the goal is to follow high-
level textual instructions (see section 2), but even these success stories may not
generalize well to handling grounded language across domains or environments.
LLMs and VLMs currently also have limited ability to handle multimodal sensor
inputs of the sort that may occur in robotics settings, including auditory data.

Like many machine learning models, current approaches to grounded lan-
guage learning tend to struggle with common sense reasoning [97], in which
general, domain-agnostic background knowledge is key to understanding utter-
ances. As an example, one description of an object might be “This is an apple,
it’s a kind of fruit.” A robot with a good grounding system may learn the name
and be able to identify apples subsequently, but will not be able to conclude
that it is edible, or that it is similar to a banana. Another example has to do
with a robot that has learned to hand someone a plate upon being instructed
to do so, but would not from such a request conclude that the person is hungry
or likely to engage in activities such as eating or setting the table. Efforts to
combine common sense and language grounding exist [23, 15], but true common
sense remains an elusive goal, as indeed it does in artificial intelligence generally.

There are also ethical questions and questions of bias and fairness associated
with this problem area. There is a robust ongoing discussion in the machine
learning community about discrimination and representation in machine learn-
ing technology, and the role of equitable development paradigms in addition to
the deep-seated biases found in large data corpora (inter alia, [25, 22, 64]).
These questions are highly relevant to the problem of making robots that learn
from end users about their environment; a deployed system that works unevenly
across different user demographics is inherently problematic, even if the system’s
average success is high. In considering this, it is necessary to bear in mind that
discriminatory performance from machine learning models is not solely a prod-
uct of unbalanced data [21, 11]. Model designs [73, 65], representational encod-
ing choices [19], data collection methods [46], and learning paradigms all affect
the inclusiveness of not only the results of machine learning, but the selection
of the core questions being asked.

5 Conclusion

This chapter has discussed grounded language acquisition as a field where robotics
and natural language understanding come together, and has discussed how
learning to understand speech about the world plays a substantial role in human-
robot interaction. A sampling of current work in this space has been described,
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with an emphasis on the challenges involved in going from understanding textual
language to spoken language and in handling rich multimodal perception and
communication. The chapter closes with an overview of some of the many out-
standing challenges in the general space of understanding grounded language,
including dealing with speech, learning-derived problems such as generalization,
and classical artificial intelligence problems such as incorporating common sense
reasoning.

Language is not synonymous with sound: speech is a carrier for linguis-
tic content, but only one of several mechanisms by which communicative con-
tent can be conveyed. Nevertheless, speech is an obvious, intuitive mecha-
nism for human-robot interaction, tightly coupled with questions of language
understanding and understanding the world from complex perceptual context.
Grounded language understanding, particularly from speech, represents a rich,
promising research space that is tightly interwoven with questions of sound in a
robotic environment. There is extensive work in this area and in the related ar-
eas of spoken language processing and human-robot interaction, and this chapter
attempts to provide an overview of some of the ways in which these elements
come together.
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