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Abstract
Given the correct context, nonverbal interaction can express high-level information with
greater universality, efficiency, and appeal than spoken words. The focus of this work is
to develop a simple nonverbal communication strategy for conveying high-level robot in-
formation to facilitate human-robot collaboration. We propose a low-dimensional param-
eterized communication model based on nonverbal sounds (NVS). The proposed model
functions by modulating a fixed number of parameters of a base sound in an attempt to
communicate distinguishable high-level robot states. A valence-arousal mapping is used to
characterize the continuous axes of the proposed two-dimensional parameterized model.
The developed communication model is validated using an online interactive survey de-
signed to explore how well the model communicates high-level robot information, and how
this communication modality affects the user’s experience and shared task performance.
Specifically, we investigated three parameters: participants’ perceived understanding of
the robot whilst observing an interaction video, their willingness to continue observing
interactions with the robot, and their estimation of the suitability of the proposed com-
munication model for the given context. The results of this study provide insight and
direction concerning to the use of simplified NVS communication for human-robot collab-
oration. In addition, this work builds support for the development of a positive feedback
loop through this modality, encompassing positive user experience, increased interest in
subsequent interaction, and increased collaborative performance via familiarization.

1



2Towards Improving User Experience and Shared Task Performance with Mobile Robots through Parameterized Nonverbal State Sonification

1.1 Intro
As we continue to integrate collaborative machines within critical economic sectors in-
cluding manufacturing, logistics, and healthcare, a growing number of users with diverse
backgrounds will enter collaborative interactions with robots, increasing the need for
seamless human-robot interaction (HRI). Nonverbal communication forms an essential
component of human interactions and has accordingly been an important focus in the
development of human-robot interactions [1]. Given the correct context, nonverbal inter-
action can express information with more universality, efficiency, and greater appeal than
spoken words [2,3]. Nonverbal cues have been used for both active transmission of specific
information (explicit) and passive conveyance of state information (implicit). The combi-
nation of these two modalities has been shown to improve the mental models that humans
develop for collaborative robots, thereby improving understanding and trust [2, 4, 5].

Despite it’s advantages, nonverbal communication presents a trade-off related to the
challenge of expressing complex ideas and the ambiguity of interpretation by human
collaborators. This has been shown to occur even with seemingly intuitive nonverbal
communication methods [6]. These disadvantages can be mitigated via human-robot fa-
miliarization. Improving user experience (UX) is an effective method for incentivizing
users to spend more time with a nonverbal social robot, providing the opportunity to
learn the mappings between it’s nonverbal cues and corresponding states [7]. Thus, a
positive feedback loop between UX and the learnability of a robot’s nonverbal mapping
could be realized, as studies show users who have a better awareness of a robot’s internal
state and intent are more likely to characterize interactions with that robot as interesting
and enjoyable [2, 8].

Nonverbal cues including body language [9–11], gestures [3, 12, 13], facial expres-
sions [2, 14], lights [8], sounds [15, 16] and colour [17] have been widely implemented
among collaborative machines deployed in real-world settings. In addition, the use of
nonverbal communication in robotics has proven to be an effective method for improving
user experience (UX) and shared task performance [4,8,12,16]. The potential of expressive
sounds for robot communication remains a relatively under-explored research area, with
a general focus on emphatic emotions [18], such as joy, anger, and disgust. Less attention
has been given to task-focused communicative expressions. Numerous developed state
communication models map a single sound to a single state with minimal or no ability to
incrementally transition between or vary within communicative states [15,19]. The ability
to incrementally adjust sound parameters would enable robots to achieve a greater degree
of fluidity in social interactions, creating smoother and more enjoyable interactions.

The focus of this work is to develop a low-dimensional parameterized communication
strategy based on NVS for conveying high-level robot information to facilitate human-
robot collaboration. In robotics, using sound to represent robot states and information
is referred to as state sonification [16, 20]. The proposed model functions by modulating
a fixed number of parameters of a base sound in an attempt to communicate distin-
guishable high-level robot states. Our work builds on previous studies of this interaction
modality [15,16,20] with the goal of reducing miscommunication and improving the user’s
mental model of a collaborative robot. In this work, we investigate the efficacy of using
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FIGURE 1.1: Key frames taken from video clips used in the online survey. (Top Left) Human initiating
a leader-follower interaction with a robot. (Top Right) Robot attempting to communicate to a human
that it needs assistance opening a door. (Bottom Left) Robot approaching a curb alongside a human.
(Bottom Right) Human requesting assistance from robot while working on a bike.

parameterized state sonification to convey high-level robot information relevant to human-
robot collaboration, and how this communication modality affects the user’s experience
and shared task performance.

The developed communication method is validated using an online user study. This
study tested participant understanding of the proposed nonverbal communication strategy
using audio clips and the suitability of the communication strategy for HRI scenarios
using video clips. Fig.1.1 shows a set of sample images from the video set. The results
of this study present both insight and direction concerning the use of simplified NVS
communication for human-robot collaboration.
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1.2 Related Work
Implicit vs Explicit Communication. Nonverbal communication consists largely of
the implicit communication that can be observed in everyday interactions between people.
While explicit communication, verbal or otherwise, is effective for direct and explicit com-
munication, supplementing information implicitly can aid general understanding between
collaborators. Using a collaborative task-based user study, Breazeal et al. showed that
implicit nonverbal robot communication can improve a user’s mental model of a robot’s
internal state, task efficiency, and error robustness [2]. Zinina et al. concluded that people
greatly prefer interacting with a robot that utilizes implicit communication [5].

Implicit Communication in Non-Humanoid Mobile Robots. Implicit commu-
nication is typically modelled on human gestures and facial movements due to the ease
with which people can pick up on these familiar expressions. Mutlu et al. found that
users were able to better predict robot intent using cues provided by a humanoid robot’s
gaze [4]. Breazeal et al. found similar results using gaze combined with shrugging mo-
tions [2]. While less attention has been paid to implicit communication for non-humanoid
mobile robots, previous studies have explored expressive lights [8] and sonification [20].

Nonverbal sounds for communication. Nonverbal sounds (NVS) have been used
to communicate robot information in numerous ways, with inspiration often being drawn
from the world of science fiction. Jee et al. used musical theory to analyse the sounds
developed by Ben Burtt for the cinematic robots R2-D2 and Wall-E, from the films Star
Wars and Wall-E, respectively [21]. Amongst others, this work concludes that the into-
nation of an NVS for robot communication should correlate to human speech. Similarly,
Schmitz et al. used the concept of affect bursts, defined as ”very brief, discrete, nonverbal
expressions of affect in both face and voice as triggered by clearly identifiable events”,
to produce synthetic NVS to represent human emotional states [18]. Komatsu showed
that altering a sound using a continuous parameter, in this case pitch change, can influ-
ence a human’s perception of an artificial agent’s interactive state by asking participants
to match sounds to the states agreement, hesitation, and disagreement [22]. Luengo et
al. proposed a model for NVS generation that splits sounds into indivisible sonic terms,
or quasons [15]. An automated version of this model could combine different configura-
tions of these terms based on situational context to represent different interaction states
of a robot. To construct these quasons, three sound parameter categories (amplitude,
frequency, and time) were identified and validated using an online questionnaire.

Sonification Mapping. In robotics, sonification is the process by which sounds are
used to represent robot states and information. Sonification mapping is the process by
which these states and sounds are related, and can take the form of emotion and action
representations. Different sonification techniques include juxtaposing rhythmic vs. con-
tinuous sounds [16], the use of auditory icons-earcons [23, 24], and musical loops-based
sonification [25]. Each technique has shown merit in accurately conveying specified ac-
tions, intent, or emotions. Recent publications have mapped music emotion [26], and more
recently robot state sonification [16] using a 2D valence-arousal (VA) graph [27]. A ren-
dition of this graph can be seen in Fig.1.2 and is further described in the Methodology
section of this report.
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1.3 Questions and Hypotheses
In this work, we investigated the efficacy of using parameterized state sonification to
convey high-level robot information relevant to human-robot collaboration, and how this
modality relates to UX and shared task performance. This work seeks to realize a positive
feedback loop present between a user’s interaction enjoyment and the learnability of a
robot’s nonverbal mapping. Previous studies have affirmed the use of nonverbal modalities
to facilitate enjoyable interactions with social robots [2,8,12,28]. Informed by these prior
works, we formulated the following research questions (Q1, Q2) and hypotheses (H1,H2):

Q1 How effective is a low-dimensional approach to parameterized state sonification for
conveying high-level robot information relevant to human-robot collaboration?

Q2 How does user familiarization with this nonverbal communication strategy correlate
to user experience (UX)?

H1 Linearly modulating two parameters of a sound will be a sufficient sonification strategy
for communicating distinguishable high-level robot information relevant to human-
robot collaboration.

H2 An appropriate sonification strategy will create a positive feedback loop, encompassing
positive user experience, increased interest in subsequent interaction, and increased
collaborative performance via familiarization.

The remaining sections of this chapter are structured as follows. The methodology
and user study sections detail the approach we followed to answer the stated research
questions and test our associated hypotheses. We then summarize our findings in the
results & analyses section, followed by a discussion of these results. Finally, we close with
final remarks and offer our thoughts on interesting avenues for relevant future work.

1.4 Methodology
Collaborative Robot States. In a related study, Baraka et al. [8] modelled three high-
level robot states (on-task, stuck, requesting help) which most accurately represented
their robot throughout their interaction scenario using onboard lights. Extrapolating from
[8] and other studies [4, 6, 20] which focused on communicating robot states relevant to
human-robot collaboration, we formulated five high-level robot states relevant to human-
robot collaboration: idling, progressing, successful, unsuccessful and requires attention.
Each of these states is briefly described in Table 1.1 and visualized as a continuous region
along a two-dimensional valence-arousal (VA) graph in Fig.1.2.

The state idling is defined as a robot at rest, awaiting human-initiated interaction.
This state is analogous to the standby mode common to personal electronics such as
computers, televisions and mobile phones. In this state, the robot is not communicating
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auditory information. The state occupies the lower region of the VA graph, Fig.1.2 where
arousal=0. Above idling, the state progressing occupies the central region of the graph.
The state progressing overlaps with most other non-mutually exclusive states, as a robot
can be actively processing a task with ranging degrees of confidence (correlated with
valence) and urgency (correlated with arousal). On the right-hand region of the graph,
the state successful is reached when the robot completes an assigned task. The overlapping
region between successful and progressing refers to an on-task robot that is confidently
progressing through an assigned task, whereas the right-most region refers to a robot
which has successfully completed an assigned task.

The left-hand region of the graph unsuccessful is reached when a robot is unable to
complete an assigned task. The overlapping region between unsuccessful and progressing
refers to an on-task robot that is confused or struggling with an assigned task, whereas
the left-most region refers to a robot which has failed or is unable to complete an assigned
task entirely. Finally, the upper region of the graph refers to the state requires attention.
In this state, a robot is attempting to get a human’s attention and initiate an interaction.

FIGURE 1.2: Visualization of Five High-Level Robot States on a Valence-Arousal Graph.

Collab. State Description
Idling At rest, awaiting human-initiated interaction
Progressing On-track, actively processing an assigned task
Successful Confident or able to complete an assigned task
Unsuccessful Struggling or unable to complete an assigned task
Req. Attention Attempting robot-initiated interaction

TABLE 1.1: Summary of Five Formulated Robot States Relevant to Human-Robot Collaboration.
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Similar to progressing, this state overlaps other states, as a robot may be actively seeking
attention for positive or negative reasons.

Sonification Model Design. To develop our nonverbal state sonification model, we
investigated sonification techniques proven to facilitate effective and enjoyable interaction
with humanoid and social robots [2, 20]. This investigation aimed to build a sonification
model for a non-humanoid mobile robot based on sonification techniques which translate
intuitively from humanoid and social robotics. We explored a sonification strategy in
which we modulated a fixed number of parameters of a base sound in an attempt to
communicate distinguishable high-level robot states. We focused on a low-dimensional
model, strictly adjusting two parameters while keeping all remaining parameters constant,
to reduce the number of variables and simplify the model validation process. By restricting
the number of communication variables, we sought to reduce the required complexity of
translation between the robot’s state information and it’s communication. Similar to [16],
a 2D valence-arousal mapping [27] was used to characterize the continuous axes targeted
by this 2D sound parameterization, as shown in Fig.1.2. Using a model initially developed
for human emotional communication [29] presented the opportunity to explore different
sound parameters that could map effectively to these axes, such as frequency to valence
or volume to arousal.

To reduce the number of variables and simplify the model validation process, we
structured our sonification model around one neutral sound set on a loop. This sound was
selected based on it’s neutral characteristics, namely, it’s short duration and consistent
pitch and volume. We situated this neutral sound at the origin of our VA graph. The
sample we used was a 4-second synth sound file named Infuction_F#.aif from the Ableton
Live 10 sample library, shown in Fig.1.31.

We experimented with mapping different sound parameters to each axis of our 2D VA
graph. Parameters that were explored for the valence axis included the sound’s relative
harmonic key, pitch, and amplitude of pitch change within a single loop. For each ex-
perimental mapping, we used the digital audio workspace Ableton Live 10 to modulate
the neutral sound situated at the origin. This output sound was used to gauge how the
modulation of each candidate parameter correlated to perceived changes in the neutral

1Sonification library: https://tinyurl.com/sonificationlibV1

FIGURE 1.3: Visualization of the Neutral Sound File Named Infuction_F#.aif. The dark-shaded region
represents the audio file’s sound wave. In this representation, the x-axis is the time domain, while the
y-axis is the magnitude of the sound wave. Translation along the y-axis represents changes in the wave’s
frequency. The thickness of the wave is it’s volume. The sound wave is shown twice as the audio file is
stereo, meaning the file has both a unique sound wave for left and right channels in a 2-channel audio
system. In this case, both left and right sound waves are identical.
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sound’s valence. The same process was done for the arousal axis, exploring parameters
such as relative decibels (dB), the sound loop’s duration (BPM), and the number of occur-
rences of the neutral sound within a single loop. Fig.1.4 shows a decision matrix used to
identify two parameters from an initial list of six to use for the 2D sonification mapping.
The criteria used to identify a suitable pair were the perceived changes to valence and
arousal, the potential of the parameterization to be applied to any arbitrary base sound
with previously stated neutral characteristics, and the simplicity of implementation. The
performance measures shown in Fig.1.4 were estimated following an initial analysis of the
considered parameters.

From the decision matrix shown in Fig.1.4, the parameter selected for the valence axis
of our 2D mapping was the amplitude of pitch change within a single loop. Changes in this
parameter were estimated to have a high impact on the perceived valence, with a lower
effect on arousal. This parameterization was also deemed relatively simple to implement,
and easy to apply to different base sounds. The final parameter selected for the arousal
axis of our 2D mapping was the number of occurrences of the neutral sound within a
single loop. This parameter was perceived to have a corresponding impact on arousal
without affecting valence and was also estimated to be comparably simple to implement
and apply to different base sounds. As well as being individually appropriate, these two
parameters were estimated to be a suitable complement to one another.

Using the two selected parameters, the VA graph shown in Fig.1.5 was discretized into
25 regions with valance ranging from [-2, 2] and arousal ranging from [0, 4]. At the region
(0,1), the neutral sound is played once within the communication loop, with no change in
pitch through the loop. As shown in Fig.1.6, increases and decreases along the discretized
valence axis represent weighted positive or negative pitch change throughout a single
communication loop. As shown in Fig.1.7, increases and decreases along the discretized
arousal axis represent adding or removing repetitions of the neutral sound within a single
communication loop. No sound is produced in the grey regions in Fig.1.5 where arousal
is zero.

The discretized regions shown on the VA graph in Fig.1.5 directly map to the selected
high-level states represented as continuous regions in Fig.1.2. While regions at the center
of the graph (-1,1) through (1,3) map to the state progressing, regions along the top of
the graph (-2,3) through (2,4) map to requires attention. Similarly, regions (1,1) through
(2,4) along the right-hand side map to successful, and regions (-2,1) through (-1,4) along
the left-hand side map to unsuccessful. As previously discussed, Idling is represented by
the greyed-out regions along the bottom of the graph (-2,0) to (2,0) where no sound is
produced.
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FIGURE 1.4: Decision matrix used to identify appropriate parameters for the proposed sonification model.

FIGURE 1.5: (Left) Visualization of 25 discretized regions on a valence-arousal graph. (Right) Sound
files in Ableton Live 10 corresponding to each discretized region on the valence-arousal graph.
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FIGURE 1.6: (Top) Visualization of the positive pitch modulation applied to the neutral sound wave
to produce a valence=1 sound. (Bottom) Visualization of the negative pitch modulation applied to the
neutral sound wave to produce a valence=-1 sound. Note the axes of the left of both figures, representing
the amplitude of pitch change for both pitch modulation examples.

FIGURE 1.7: (Top) Visualization of the sound profile which represents the discretized region VA=(2,2).
Arousal=2 is represented by two repetitions of the blue-shaded neutral sound wave. (Bottom) Visualiza-
tion of the sound profile which represents the discretized region VA=(2,3). Arousal=3 is represented by
three repetitions of the blue-shaded neutral sound wave. (Both) The green shaded sound wave represents
the positive valence=2 sound blended with the repetitions of the neutral sound.
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1.5 User Study
Structure of Survey. To validate the developed sonification model, we carried out an on-
line observational study using the platform Qualtrics2. This user study was reviewed and
approved by the Monash University Human Research Ethics Committee (MUHREC) with
project ID 35703. This survey contained a series of audio samples from our sonification
model, videos of HRI scenarios shot using a GoPro camera3, and associated interactive
questions. This study was formatted as an observational survey to reduce possible stim-
ulus variation between participants. As outlined by [30] and demonstrated by [31–33],
screen-based methods are an effective way to fix the exact stimulus that each participant
experiences. To this end, participants of our study were asked to listen to the same audio
samples and observe the same videos. This study was conducted as an online survey, such
to facilitate the recruitment of a large, diverse pool of participants. This also followed in
the mould of previous similar studies, such as [15].

Before commencing the main sections of the survey, participants were asked to com-
plete a preliminary data-collection consent form, along with a set of pre-survey questions.
These questions were used to collect demographic data along with self-scored experience
and enthusiasm levels related to working with collaborative robots. Upon completing this
preliminary section, users were brought to an introductory page outlining the concepts
of valance and arousal and their relation to robot states. This introduction was followed
by six questions in which users were presented with a blank VA graph discretized into 25
regions as shown in Fig.1.5. For each of these six questions, users were asked to listen to a
sound selected from our sonification library and guess which region this sound represented
on the graph. The six sounds were chosen to give a distributed representation of the VA
graph. A visualization of this selection process is shown in Fig.1.8.

The next section of our survey was similar to the previous one, with the addition of
videos. For each question, users were presented with a video in which a Jackal mobile

2Qualtrics User Study: https://tinyurl.com/qualtricsstudyV1
3YouTube playlist of all survey videos: https://tinyurl.com/sonificationvideos

FIGURE 1.8: (Left) VA graph with 25 discretized selection regions presented to users. (Right) VA Graph
after users have made their selection.
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robot was communicating with a human using the designed sonification model. Each
video captured a unique HRI scenario with a unique outcome. The video was paused
at a key point midway through the interaction scenario, at which point users were asked
which region the sounds emitted from the Jackal represented on the discretized VA graph.
Keyframes from these video clips are shown in Fig.1.1. In addition to this selection, users
were asked to answer a multiple-choice question regarding which state they perceived the
robot to be in. The options for this question consisted of each state outlined in Table 1.1
with the additional option not sure.

Unlike the previous section with a fixed number of questions (six), participants selected
the number of video questions they wanted to complete. Upon completing an initial
mandatory set of five video questions, users were presented with an option to view another
video or proceed to the final video question. The number of video questions that users
could complete within this section was capped at 15. Allowing users to select whether
they would like to watch another video was used to gauge their interest in the robot
interactions.

Following this set of video questions, users were presented with a final video question.
This video was identical to the first video users watched in the previous section. The re-
peat video was used to gauge how contextual familiarization with the sonification model
affected their ability to learn the sonification model and thus improve their robot state es-
timation accuracy. In addition, the variability in the number of video questions completed
in the previous section presented an indication of the effects of extended familiarization
with the sonification model.

Upon completing the repeated video question, users were presented with another sec-
tion in which they were asked to listen to sounds without videos and guess which region
these sounds represented on the discretized VA graph. Unique sounds from those pre-
sented at the beginning of the study were used in this section. Finally, participants were
presented with a set of post-survey questions tailored from the BUZZ scale [34]. These
questions probed for feedback on the audio communication model and user study overall.

Participants. This online survey was distributed as a single link over multiple Monash
University social pages, along with several external networking platforms not affiliated
with the university. In all, our study received 37 complete responses. An analysis of
our collected demographics data revealed an overall age spread of 18-60+, with 43%
of respondents in their 20s. In addition, 65% of respondents self-reported having little
(2) to no (1) experience working with collaborative robots on a 1-5 Likert scale. To our
surprise, there was a wide range of professions among participants including data analysts,
government workers, teachers, and students.
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1.6 Results and Analysis
Sonification testing. To test the intuitiveness and learnability of the sonification map-
ping, the errors in the participants’ predictions of a sound’s position on the VA graph
were recorded. For simplicity, the error was recorded as the distance in grid squares of
the prediction from the true position on the discretized VA grid. Fig.1.9 shows the trends
of errors across the question set. There is a trend towards decreasing errors across the
question set, although with a low statistical significance.

Further analysis of the errors in VA predictions is shown in Fig.1.10. These distri-
butions show that the errors in arousal prediction were higher than those in valence,
although with a large overlap. A 15% decrease in averaged overall participant error was
observed in the second batch of sounds as opposed to the first, indicating a degree of
learnability in the designed sonification method.

Interaction scenario testing. For each interaction video, participants were able
to select up to two robot states that they believed to apply to the given scenario. The
low arousal state, Idle, was mapped to a non-communicative state in which no sound
was emitted from the robot. Thus, this state was not analyzed in the set of interaction
videos. Fig.1.11 shows the percentage of participants who were able to correctly identify
each high-level robot state, averaged over the question set. States successful and requires
attention were both identified correctly by over 70% of participants across the question set,
while progressing and unsuccessful were both identified by roughly 50% of participants.

FIGURE 1.9: Error in VA predictions across sound question set
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FIGURE 1.10: Error distributions across sound question set

As participants were able to select multiple states for each scenario, further analysis is
provided by examining the correct state selections in relation to the total selections made
by participants. Fig.1.12 shows the participants’ selection accuracies for each robot state
using the correct and incorrect scores. These scores were calculated using the correct and
incorrect selections as percentages of the total selections for each question (i) averaged
over the question set (m) as shown in the following equations:

correct_score =
1

m

m∑
i=1

correct_selectionsi
total_selectionsi

∗ 100%

incorrect_score =
1

m

m∑
i=1

incorrect_selectionsi
total_selectionsi

∗ 100%

Fig.1.12 shows some strengths and weaknesses of the developed sonification method.
Successful was found to be easier to convey than unsuccessful, with a 25% higher average
classification accuracy. Similarly, the high arousal state requires attention was correctly
classified more than the lower arousal state, progressing, with a 12% margin. Overall,
the incorrect selection scores of all classes were relatively low, with the exception of the
progressing class.

No strong trend was observed in the classification accuracy across the question set, as
the specific situational context was found to have a dominant effect. However, by analyzing
the change in performance for the repeat question, a positive effect of familiarisation with
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FIGURE 1.11: Participants’ prediction accuracies for each robot state

FIGURE 1.12: Correct and incorrect scores for each robot state
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FIGURE 1.13: Effect of repeated interaction on duplicate scenario improvement

the Jackal’s communication model may be substantiated. In general, there was little
difference seen between the first question and the duplicate final question. However, as
shown in Fig.1.13, a correlation between the number of videos a participant elected to
watch and the classification accuracy improvement on the final repeated question was
observed.

Fig.1.14 shows the effect of the participants’ self-recorded feelings towards the com-
munication model on the number of videos they chose to watch. In general, there is an
observed relationship between fondness for the communication model and a desire for
repeated interaction via the survey videos. Paired with Fig.1.13, this points towards a
positive relationship between user experience and robot understanding. However, this
cannot be conclusively attributed to the communication method, as fondness for the
robot’s communication cannot be concretely separated from fondness for the robot itself.

When analyzing the valence-arousal predictions made during the video section of the
user study, a larger spread of errors was observed, as shown in Fig.1.15. There was no
observable trend in these errors across the video set. This emphasizes the large role that
situational context played in the participants’ understanding of the robot during real-
world interactions.
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FIGURE 1.14: Average number of videos watched according to self-recorded feeling towards the commu-
nication model

FIGURE 1.15: Distribution of errors in valence-arousal prediction of video section
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1.7 Discussion
The data presented in Fig.1.11 and Fig.1.12 show that a low-dimensional continuous
sonification mapping can be used to communicate high-level robot state information,
supporting H1. However, certain states were understood by the participants with greater
accuracy than others, indicating the need for further refinement in the designed com-
munication model. Due to the use of lower frequencies, low-valence sounds were more
difficult to differentiate than high-valence sounds on standard audio devices. This may
explain why the successful interactions were classified with a higher degree of accuracy
when compared against unsuccessful. Additionally, multiple participants reported that
the neutral position on the VA graph sounded too high in arousal. This could explain
why the high arousal state requires attention was correctly identified at a higher rate than
the lower arousal state progressing, as participants regularly mistook passive communi-
cation for more active. The relatively high incorrect score of the progressing class may
be attributable to it’s position relative to the other states, as participants unsure of their
predictions were perhaps likely to also select this more neutral state.

Overall, the majority of participants rated the communication as "Easy" or "Very
easy" to understand, however, over a fifth rated the communication as "Difficult" or
"Very difficult", highlighting that the proposed strategy is not intuitive to all users. This
breakdown is shown in Fig.1.16. The participants’ feelings towards the communication
model were determined using both a Likert scale question, shown in Fig.1.17, and a set
of open-ended questions. Both mediums showed dominantly favourable reactions with a
few negative responses. The correlation between likability and number of videos watched,
shown in Fig.1.14, points to a potential relationship between user experience and inter-
est in repeated interaction. Viewed in conjunction with Fig.1.13, the realized positive
feedback loop between user experience, repeated interaction, and consequently improved
robot understanding begins to support H2. A potential advantage key to this positive
feedback loop is the improved user enjoyment resulting from a non-traditional, interesting
communication form. Similar to H1, properly validating H2 would require a comparison
analysis between alternate nonverbal and verbal communication strategies.

With respect to the validation parameters, we found that participants were able to
understand certain high-level robot states within different interaction scenarios. The rela-
tive difficulty observed in communicating certain states is believed to be due to features of
the sonification model. From these findings, we believe that the model could be improved
by improving sound clarity at low valence states and tweaking the parameterization tech-
niques to better differentiate between high and low arousal states.

Regarding the perceived suitability of the proposed communications strategy, Fig.1.16
and Fig.1.17 indicate that this communication strategy is both favourable and intuitive
to most participants, acknowledging some discrepancy among participants and the small
size of the study pool. This discrepancy is expected, as ambiguity is unavoidable in all
non-explicit communication and may result in a negative reaction from some users.
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0% 25% 50% 75% 100%

120862

V. difficult Difficult Neutral Easy V. easy

FIGURE 1.16: Participants’ ease of understanding communication(absolute participant numbers shown
on graph)

0% 25% 50% 75% 100%

415153

Str. dislike Dislike Neutral Like Str. like

FIGURE 1.17: Participants’ reactions to communication method (absolute participant numbers shown
on graph)

1.8 Conclusions and Future Works
Reflecting on our research questions:

Q1 How effective is a low-dimensional approach to parameterized state sonification for
conveying high-level robot information relevant to human-robot collaboration?

Q2 How does user familiarization with this nonverbal communication strategy correlate
to user experience (UX) and shared task performance?

In our study, the proposed NVS model was able to effectively communicate the outlined
set of robot states, with a degree of error due to the simplicity of the proposed 2D
mapping. The findings also show variance between the different states; communicating
the states successful and requires attention were less error-prone than unsuccessful and
progressing. This finding presents an opportunity to experiment with alternate approaches
for expressing mid-ranged arousal and negative valence. In the interest of making the
sounds within our model more distinguishable, we plan to explore the use of different
base sounds, blending sounds at the extremities of our VA mapping with auditory icons-
earcons [20, 23], reducing the number of sounds emitted while progressing, correlating
volume with arousal, rapidly oscillating the pitch of negative valence sounds rather than
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simply bending the pitch in the negative direction, and increasing our sonification model’s
dimensions of parameterization. Ultimately, we believe adding more complexity to our
communication model while retaining structured parameterization would be an effective
way to generate more meaningful and appealing sounds while further reducing human-
robot miscommunication. To aid in characterizing the modulation of an additional sound
parameter, we plan to explore the extension of a 2D valance-arousal (VA) mapping to a 3D
valance-arousal-stance (VAS) mapping. This extension has proven effective for conveying
robot emotion with a higher degree of complexity [35,36]. An interesting avenue of future
work would be to explore how the use of this higher-dimensional mapping might be useful
for conveying high-level robot information relevant to human-robot collaboration.
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